

DUBAI | MALAYSIA

UK

جامعة أبوظبي Abu Dhabi University

Low Cement Concrete Mixes with PET plastic fibres in Reinforced Concrete Beams

11th Undergraduate Research & Innovation Competition, Abu Dhabi University, Khalifa City Campus.

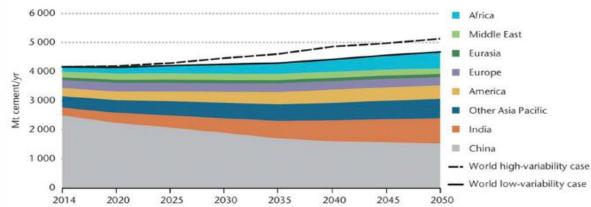
Afeefa Muhammad Iliyas, Ashraf Shahbaaz and Aashish Jain

4th year Civil Engineering Student, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Dubai

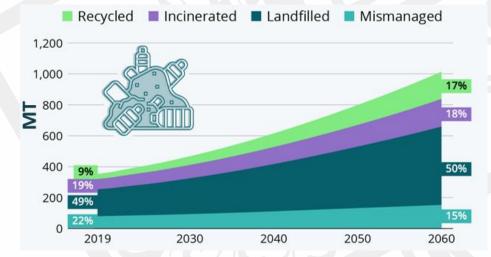
Supervisor

Dr. Mustafa Batikha

Concrete


Cheap construction material, Low maintenance cost, Easy to shape, Less skilled labor and Fire and weather durable.

Second consumed material after water (**20 billion tons** annual production)

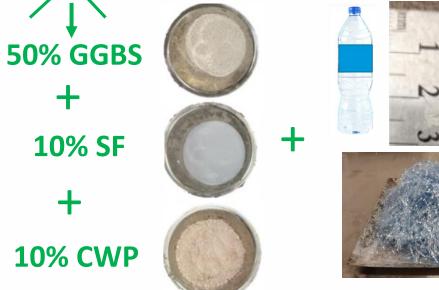

Cement Production 550 to 1000 kgCO₂/ton

7% of the Global CO_2 emissions

Plastic

Low cost; easily shaped; lightweight; resistant to corrosion; transparent; Poor heat and electricity conductor.

12 billion tons of plastic waste will be landfilled by 2050


جامعة أبوظبي Abu Dhabi University

This Research Solution

Cement+Natural Aggregates+ Water = Non-Eco-Friendly Concrete

Eco-Friendly Concrete

ADERS IN IDE

P S

AND

SOLUTION

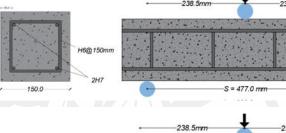
APPLAUSE

25mm PET fibre length 1% volume fraction

The aims and objectives of the project

- ✓ Reduction of plastic waste in landfills
- ✓ Providing a cost-effective solution
- ✓ Reduction of CO₂ emissions

P (kN)


Experimental Procedure and Tests

Mix-code	k-code Mix description							
M0	100% Cement-N.F.AN.C.AWater-Plasticizer							
MGS	40% Cement-50% GGBS-10%SF-N.F.AN.C.AWater-Plasticizer	C40 Mix grade						
MGSCW10	30% Cement-50% GGBS-10%SF-10% CWP-N.F.AN.C.AWater-Plasticizer	W/C=0.42						
M0-P	100% Cement-N.F.AN.C.AWater-Plasticizer-1%PET fibres							
MGS-P	30% Cement-50% GGBS-10%SF-N.F.AN.C.AWater-Plasticizer-1%PET fibres							
MGSCW10-P	30% Cement-50% GGBS-10%SF-10% CWP-N.F.AN.C.AWater-Plasticizer-1%PET fibres							

Total of 60 Concrete Samples +

12 Reinforced Concrete beams

Experimental Procedure and Tests-Continued

Slump Test

Compressive Test

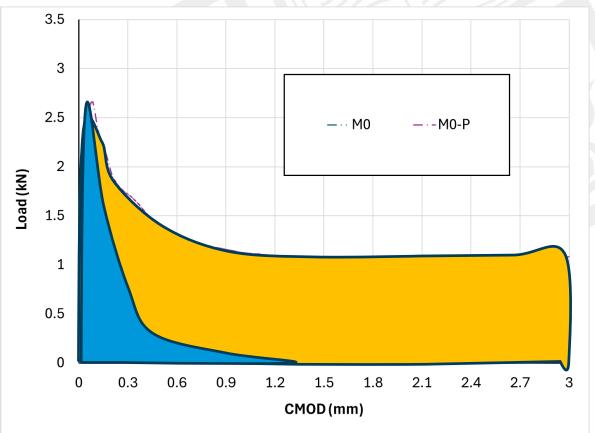
Shrinkage Test

Modulus of Elasticity Test Tensile strength and crack opening

Cubes: 7, 28 and 60 days Cylinders, prisms and RC beams: 60 days Shrinkage: weekly reading

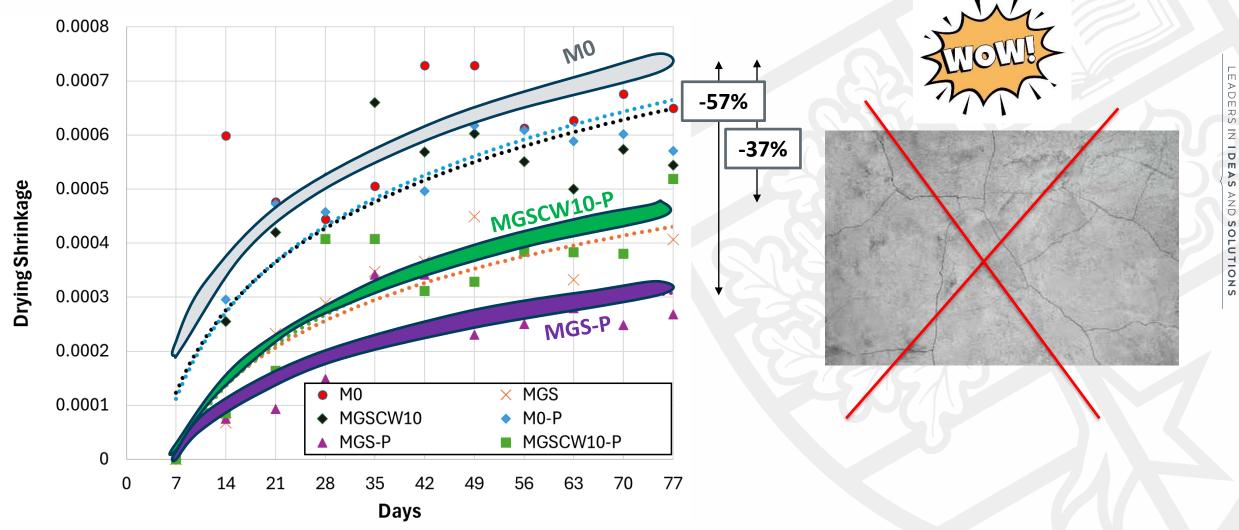
RC beam-No Stirrups

RC beam-With Stirrups



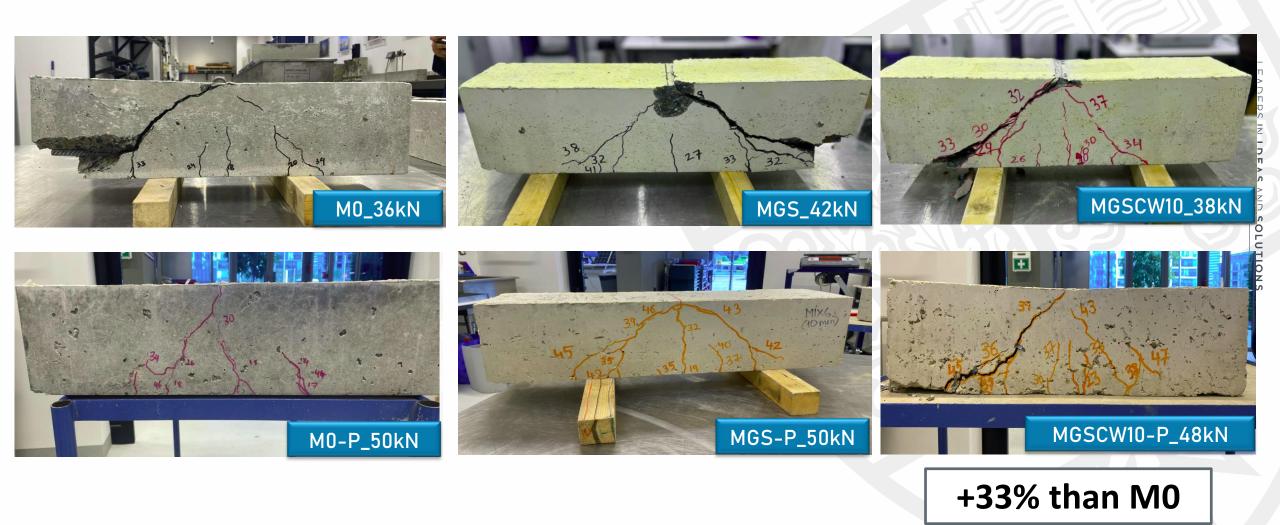
Results-Mechanical Properties

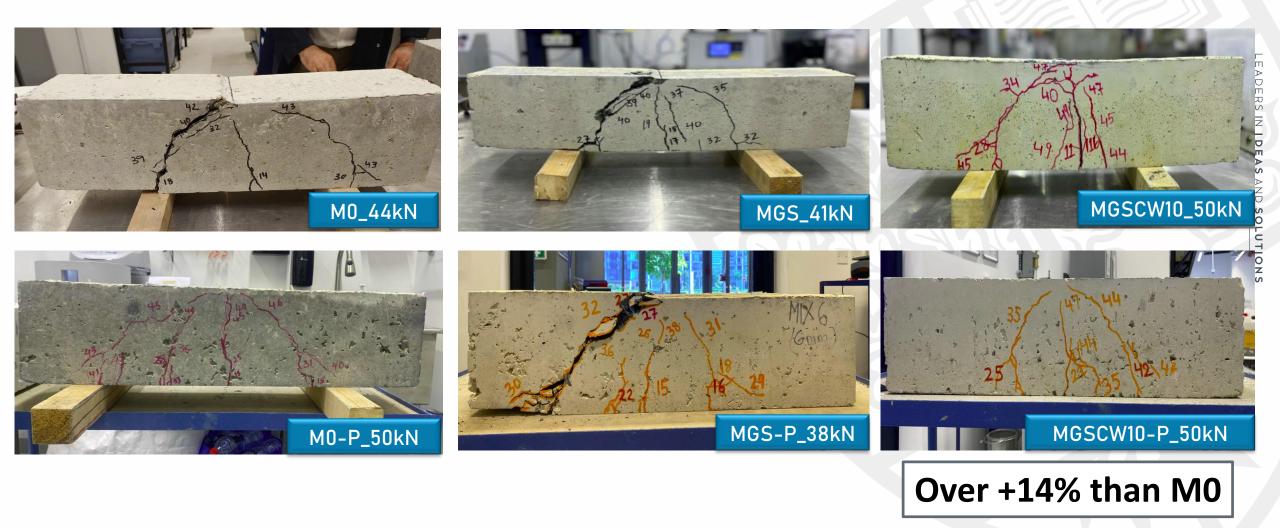
Mix-Code	Slump (mm)	Density f _{cu,60} (kg/m ³) (MPa)		<i>E60</i> (GPa)	<i>fct,60</i> (MPa)	Total post- crack energy (N.mm)	Cost (AED)	CO2 Emissions (KgCO2/m3)	
M0	270	2351	47	25	3.2	546	196	438	
MGS	240	2385	53	26	3.45	624	210	287	
MGSCW10	245	2210	46	24	3.2	281	200	259	
M0-P	100	2287	43	25	3	3248	196	438	
MGS-P	130	2233	42	25	4.1	2955	210	287	
MGSCW10-P	120	2202	41	26	3.35	2820	200	259	

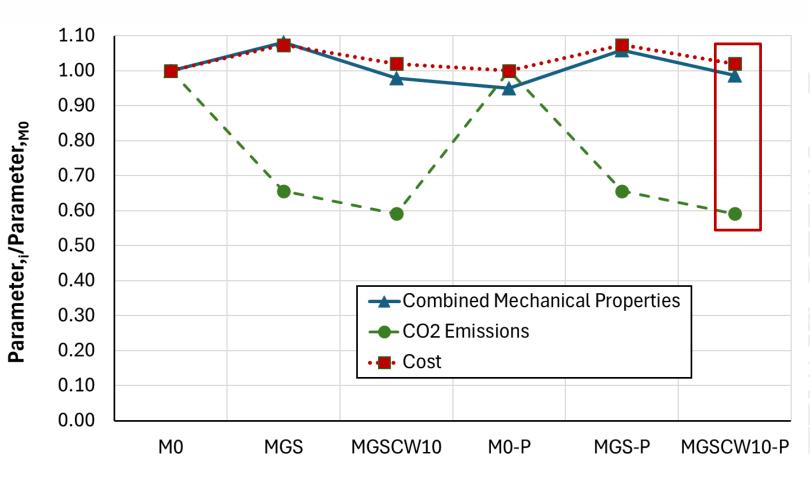

Material	OPC	GGBS	SF	CWP	NCA 20mm	NCA 10mm	Black sand	Dune sand	Water	Plasticizer
Unit price in AED/kg or AED/liter	0.265	0.25	0.7	0.0018	0.037	0.038	0.033	0.018	0.007	6

With transportation										
Material	OPC	GGBS	SF	CWP	NCA 20mm	NCA 10mm	Black sand	Dune sand	Water	Plasticizer
KgCO2/Kg	0.745	0.121	0.096	0.04	0.082	0.082	0.05	0.05	0.036	2

Results-Shrinkage



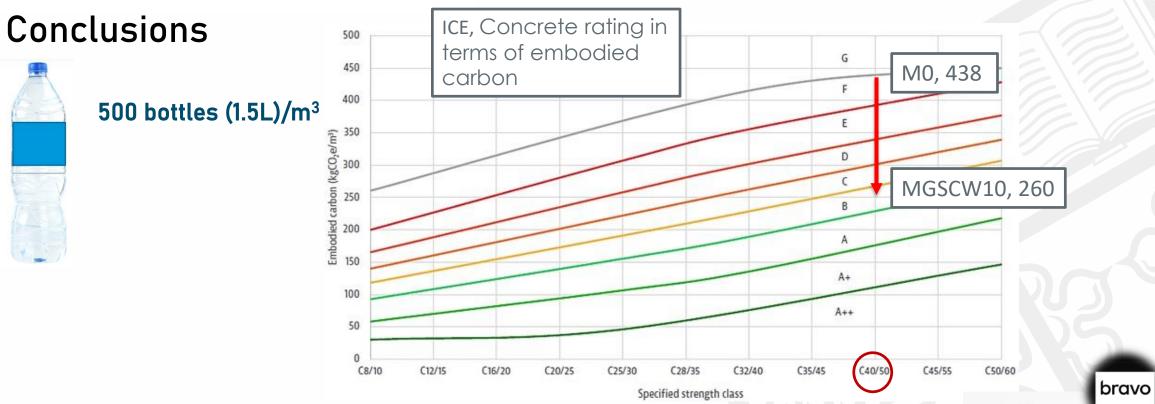

Results-RC Beams-No Stirrups



Results-RC Beams-With Stirrups

Conclusions

Mix Code



MGSCW10-P

70% cement replacement with waste materials.
37% less shrinkage than M0.
Over 5 times more post-crack energy than M0.
33% higher shear capacity than M0.
Over 15% bending capacity than M0.

Reducing steel reinforcement in concrete. Subsequently, this reduces the cost of RC elements (Lowering the houses' pricing) and the CO₂ emissions produced by steel manufacturing.

References

- Mouna Y., Irfan B., Rahman, M.S. and Batikha M. (2024). "A Statistical-Experimental Study to Investigate the Optimal Parameters of Fibres Made from Waste PET Bottles for Strengthening Concrete", Construction and Building Materials, 420, 135613. <u>https://doi.org/10.1016/j.conbuildmat.2024.135613</u>
- 2. Batikha M., McKenzie W. and Ogwuda O. (2023). " Materials & Waste Management for Decarbonisation of the Cement Industry in the UAE", CESC research bulletin, CESC research bulletin, issue No. 7, April 2023, 6p.
- 3. Mouna Y. and Batikha M. (2022). " **Plastic Fate: Opportunities and Challenges**", CESC research bulletin, CESC research bulletin, issue No. 5, April 2022, 4p.
- 4. Mouna Y., Batikha M and Suryanto B. (2021). "Low Carbon Recycled Aggregate Concrete: Roles of Slag and Silica Fume", ZEMCH International Conference, 26-28 October, Dubai, UAE.
- 5. Batikha M., Ali S.T.M., Rostami A. and Kurtayev M. (2021). "Using recycled coarse aggregate and ceramic waste to produce sustainable economic concrete", International Journal of Sustainable Engineering, 14 (4), 785–799. <u>https://doi.org/10.1080/19397038.2020.1862353</u>

THANK YOU!

